A Time-derivative Neural Net Architecture - an Alternative to the Time-delay Neural Net Architecture
نویسنده
چکیده
Though the time-delay neural net architecture has been recently used in a number of speech recognition applications, it has the problem that it can not use longer temporal contexts because this increases the number of connection weights in the network. This is a serious bottleneck because the use of larger temporal contexts can improve the recognition performance. In this paper, a time-derivarive neural net architecture is proposed. This architecture has the advantage that it can utilize information about longer temporal contexts without increasing the number of connection weights in the network. This architecture is studied here for speaker-independent isolated-word recognition and its performance is compared with that of the time-delay neural net architecture. It is shown that the time-derivative neural net architecture, in spite of using less number of connection weights, outperforms the time-delay neural net architecture for speech recognition.
منابع مشابه
Solving Fuzzy Equations Using Neural Nets with a New Learning Algorithm
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. For this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. The ...
متن کاملSolving Fuzzy Equations Using Neural Nets with a New Learning Algorithm
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. For this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. The ...
متن کاملThe gamma model--A new neural model for temporal processing
In this paper we develop the gamma neural model, a new neural net architecture for processing of temporal patterns. Time varying patterns are normally segmented into a sequence of static patterns that are successively presented to a neural net. In the approach presented here segmentation is avoided. Only current signal values are presented to the neural net, that adapts its own internal memory ...
متن کاملUnclassified Unclassified Unclassified UU
Neural networks provide an alternative method of building models of human performance. They can learn behavior from examples, reducing the need for many identical repetitions and intensive analysis. A properly trained net can be very robust in its response to a novel stimulus. This opens the door to modeling performance in the presence of an interactive stimulus. Neural networks provide the pos...
متن کاملNeural Network Modelling of Optimal Robot Movement Using Branch and Bound Tree
In this paper a discrete competitive neural network is introduced to calculate the optimal robot arm movements for processing a considered commitment of tasks, using the branch and bound methodology. A special method based on the branch and bound methodology, modified with a travelling path for adapting in the neural network, is introduced. The main neural network of the system consists of diff...
متن کامل